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Abstract

Cutting edge artificial intelligence (AI) technology is the 
cornerstone of Blue Yonder’s products. Machine learning is at 
the core of AI. Our products concentrate on optimization and 
automation of concrete processes, using data-driven predictive 
analytics and prescriptive analytics (optimized decisions), all of 
which are important value-generating subtopics of AI. We build 
upon and contribute to technologies developed in the open 
source community, while pushing the boundaries of predictive 
technologies further with our proprietary algorithms, own research 
and custom development. This article explores our research 
strategy and gives some insight as to why steady development 
is needed to build the next generation of machine learning 
applications that will help companies to transform into Predictive 
Enterprises.

Introduction

Blue Yonder’s machine learning solutions are focussed on 
delivering decisions to our customers in the time and granularity 
required by their operational systems. The starting point of making 
these decisions are predicted probabilities or probability density 
distributions that are calculated by sophisticated machine learning 
algorithms. These predictions are then used with appropriate 
metrics, such as a cost function, to optimize the individual action, 
which needs to be taken at the appropriate moment. In a retail 
environment, such a decision could be setting the best price for a 
specific product at a specific time for a specific store, made with 
consideration to other constraints from inventory, supply chain 
and logistics. In an industrial setting, decisions might be made 
in regard to choosing the next best step while a specific item or 
material is being manufactured, based on real-time measurements 
of the quality of ingredients or pre-manufactured components, 
production capacity, etc.

The development of machine learning algorithms and artificial 
intelligence has been an active research area for decades, and 
the global academic community publishes hundreds of papers 
every day on the subject. Tech giants have managed to secure 
the support of the founding fathers of artificial intelligence 
including G. Hinton at Google or Y. LeCun at Facebook, driving the 
technology forward. It is worth noting that these companies are 
not traditionally rooted in a specific domain or are considered as IT 
specialists, such as IBM or Microsoft by their heritage. Instead, they 
are rigorously data-driven and apply their knowledge to enter a 
number of industry verticals, pushing traditional players aside.

While simple linear modeling is still in the majority of commercial 
applications, more sophisticated techniques are rapidly emerging. 
Generalized linear models, neural networks, decision trees, random 
forests, support vector machines, Bayesian belief networks, 
NeuroBayes, reinforcement learning and deep learning are just 
some of the buzzwords in this vibrant field. 
  
Is there a single best method that can be applied in all cases? Are 
some methods always better than others? In this article we want 
to highlight how we here at Blue Yonder make finding solutions 
to each challenge the focus of our work and combine a variety of 
approaches to achieve our goals. 

Different Problems Demand 
Different Solutions

It may seem like stating the obvious, but different problems 
demand different solutions. At Blue Yonder, we follow a strictly 
scientific approach to problem solving. In order to make accurate 
forecasts of future events, we extract knowledge from data and 
combine this with some a priori knowledge, to build better 
a posteriori knowledge. We then base our decisions on the resulting 
predictions. Modelling prior knowledge (in a Bayesian sense) 
allows us to include details such as domain knowledge or further 
information about a specific process.

Each application and use-case is unique: While the general 
description of the problem may be easy to describe and the same 
for a number of scenarios, the details are, in most cases, specific 
to the concrete implementation. For example, in an industrial 
setting concerned with Predictive Maintenance, one might ask: 
“When does this machine or robot need servicing?” This question 
is sufficiently generic to be applied to almost all production 
plants. However, a more specific (and useful) question would 
be: “When should the next service slot for this machine or robot 
be scheduled?” The two questions are related but the former is 
focused on the machine in question, while the latter takes context 
into account, such as what is the utilization level of the production 
plant? What is the order pipeline? Do I have to risk producing a 
specific good even in adverse circumstances because a penalty 
would be too high? Are spare machines available that could 
continue production while this specific machine is being serviced? 
What are the planned maintenance slots and the availability of 
service personnel, as well as spare parts?

Being able to make a good prediction allows us to address the 
question: “When will the machine break down?” But incorporating 
the relevant context allows us to derive a decision from it that can 
then be used in the operational decisions.

Each new implementation comes with its own unique challenges: 
Which data are available – and which are available in principle but 
have to be extracted from a number of “historic” systems or even 
printed documents (such as maintenance reports)? Is sufficient 
data available and what quality does the data have? How much 
time will be needed to clean the data? Are there specific processes 
or procedures unique to this new implementation that have to be 
taken into consideration? Which further constraints apply? 

The stochastic component of the data is a key point that is often 
missed. Most realistic scenarios are neither fully deterministic nor 
completely random. Predictions for deterministic systems such 
as a simple pendulum are (almost) trivial as the outcome can be 
calculated for any time in the future, just as a grandfather clock 
measures time. Predictions for random systems are pointless as 
there is nothing to predict, just as asking “What are the numbers 
that will be drawn in the next lottery?” cannot be answered. 
Almost all practical scenarios have a deterministic and a stochastic 
component, but only this deterministic part forms the core of an 
individualized prediction. On the other hand, the large stochastic 
component leads to an uncertain or volatile prediction. This means 
we cannot know exactly what will happen, but we can make 
probability statements that contain all the information about a 
specific prediction. 
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In some cases, the probability may be very near to 0% (the event 
will not happen) or 100% (the event will definitely happen).  Being 
able to quantify volatility is a key aspect of predicting stochastic 
events as this allows us to optimize the subsequent decisions in 
the presence of uncertainty.

Finding Common Grounds

There are many common ingredients in different prediction tasks 
that actually make them more similar than initially appears. Meta 
analysis of Blue Yonder’s scientists’ experience has led to common 
problem solving strategies, common data organization, data set 
exploration strategies, analysis frameworks, template programs, 
visualization tools, the NeuroBayes and other machine learning 
libraries. This is the base Blue Yonder uses to create excellent 
solutions for new and demanding problems and products.

Same Problems Require Same 
Solutions

This is obvious and is the basis for Blue Yonder’s product roadmap 
for retail, with world-leading replenishment and pricing solutions 
already existing with great operational success in real-world uses.

Superb Technology is Made by Superb 
People

All of our data scientists at Blue Yonder have a strong academic 
background in STEM research areas, most have a PhD and a 
significant number spent time pursuing fundamental and applied 
research topics prior to joining us. Many have worked, for example 
at particle accelerator experiments like CERN (Switzerland), 
Fermilab (USA) or KEK (Japan), at cosmic ray telescopes, in 
quantum information theory, nanotechnology, biophysics, 
computer science or in robotics. They all have profound statistical 
knowledge, are keen analytical thinkers and have excellent 
programming skills.

Specialists from different research areas and scientific communities 
with diverse backgrounds in different methods and research 
cultures are the heart of every Blue Yonder team. This diverse 
skill set, founded on a common ground of research excellence 
and paired with our creative, cooperative and communicative 
atmosphere makes the data science team at Blue Yonder much 
stronger than the sum of its individual members.

Blue Yonder has developed into a highly-attractive employer for 
data scientists, winning talent from across Europe. Our people are 
always looking for the best solution, eagerly taking every chance 
to learn more and try new techniques to improve.

What Makes a Good Prediction?

One of the key questions when dealing with predictions is how to 
quantify the quality of the prediction. Naïve expectations are often 
formulated as “The prediction should match the observed event”. 
Although intuitive, this approach doesn’t take the stochastic 
component of nature into account, nor does it reflect the fact 
that predictions are either probabilities or probability density 
distributions. A vast amount of quality metrics are known in the 
academic literature – but just applying any (or all) of them doesn’t 
help much in evaluating the quality of the prediction. 

What then makes a prediction a good prediction? Generally 
speaking, a good prediction is one that contains all the information 
about the problem in question while remaining insensitive to 
statistical fluctuations. It should also be well calibrated, and – 
most importantly – it must be accurate. The statements made in 
the prediction must turn out to be correct when the predicted 
event has taken place – the method must be generalizable. It is 
quite astonishing that many professional predictions do not meet 
any of these requirements. Many people claim they can make 
accurate predictions for specific use-cases, quite often after the 
event happened. How does this come about? The confusion stems 
from misinterpreting a posteriori knowledge with knowledge 
from the time the prediction was made. This is a serious cognitive 
bias (probably good for survival in our evolutionary past, not 
optimal in our modern society1). Another common mistake is 
to over-generalize using too small a sample of historic events. 
It is crucial to avoid this pitfall and we routinely use methods 
like cross-validation, bootstrap, out-of-sample tests, event-to-
event correlations and Bayesian regularization methods to avoid 
overtraining.

Non-Gaussian statistics: In standard university statistics courses, 
the root mean square deviation is presented as the criterion for 
judging prediction quality. This is correct for Gaussian residuals. 
This metric is popular in the academic literature and practice 
because Gaussian statistics are particularly easy to use, to 
understand and to calculate. However, our experience shows 
that in many real life problems, the residual distributions have 
significant non-Gaussian tails. We have written a book on how to 
evaluate predictions correctly2, though it is currently only available 
in German.

Testing with billions of predictions: Testing the quality of all 
predictions at a large scale is an important step in ensuring that 
the stack of predictive technology always gives best results. At Blue 
Yonder, the quality of the prediction is tested by ongoing quality 
checks: Once the event has taken place and the “true” value or 
realization associated with a specific prediction becomes available, 
the quality of the prediction can be validated. In the meantime, 
billions of NeuroBayes predictions on many different research 
topics, projects and products have been tested a posteriori with 
a frequentist method. We continuously verify that classification 
probabilities are correct and mean values, as well as all credibility 
intervals of regression predictions, are correctly predicted. 

1  D. Kahneman, Thinking, Fast and Slow , Macmillan Us 2011
2  M. Feindt, U. Kerzel, Prognosen bewerten, Springer Gabler 2015
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3  DELPHI Coll. (M. Feindt, U. Kerzel et al.) A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution 
obtained at the Z Pole,  Eur.Phys.Jour. C71:1557 2011
4  An overview can be found at //www.neurobayes.de
5  M.Feindt, A Neural Bayesian Estimator for Conditional Probability Densities, 2004, http://arxiv.org/abs/physics/040209
6  M. Feindt, U. Kerzel, Nucl. Instrum. Methods A 559, 190 (2006)

Blue Yonder and Fundamental 
Research

The origins of Blue Yonder are rooted in fundamental research 
carried out at the leading high energy physics laboratories in 
the world including CERN (Geneva, Switzerland), Fermi National 
Accelerator Laboratory (Chicago, USA) and KEK (Japan). Many 
years of research by a large group of excellent researchers and 
students working with myself, Professor Dr. Michael Feindt led 
to the development of the NeuroBayes algorithm, which is now 
the cornerstone of the Blue Yonder technology stack. Once its 
potential for applications outside pure research was realized, a 
spin-off was founded at the Karlsruhe Institute of Technology (KIT), 
where Professor Feindt continues to hold a chair in the particle 
physics department. This spin-off eventually became Blue Yonder.

All rights on NeuroBayes belong to Blue Yonder. Professionalization 
and further development of NeuroBayes is done exclusively by 
Blue Yonder. However, CERN, Fermilab and KEK have been granted 
research licenses in order to provide further support.

Many of the data scientists at Blue Yonder have worked for CERN 
or other international particle physics laboratories. As a result, the 
stimulating international, creative, competitive and simultaneous 
collaborative culture of these institutions have also influenced the 
culture at Blue Yonder.

Blue Yonder and NeuroBayes

NeuroBayes was originally developed for analyzing data recorded 
by particle physics experiments. One of its earliest applications 
was the analysis of the b-quark-fragmentation function at the 
DELPHI experiment at CERN in 19993. In the meantime, it has 
found hundreds of applications in particle physics experiments 
across the globe. Though it is not used by everyone in the scientific 
community, those who do use it find that they have an edge in 
the race between scientists to extract physics knowledge from the 
huge experimental data sets. NeuroBayes has been successfully 
used for improving the efficiency and resolution of complex 
particle detectors, for determining particle types, for optimizing 
reconstruction of decay chains, to distinguish quarks from 
antiquarks, to find top-quarks, among many other applications. 
Its use in many flagship analyses has led to the discovery of new 
particles and subtle quantum effects like the oscillation between Bs 
particles and their antiparticles4.

The original NeuroBayes technology5,6,  is based on a second-
generation neural network with sophisticated pre-processing of 
the input patterns, Bayesian regularization and pruning schemes. 
One of its unique features is the ability to predict complete 
probability density distributions for regression predictions. Unlike 
many other algorithms, NeuroBayes does not predict a single 
number (e.g. “5 apples are going to be sold tomorrow”), but rather 
a complete distribution that associates a probability with

each possible outcome (e.g. the probability for selling 0 apples 
tomorrow is x, the probability for selling 1 apple tomorrow is y, the 
probability for selling 2 apples is z, etc). Having the full probability 
density distribution available allows the subsequent decision to 
be optimized — in the case of the apples: How many should be 
ordered from the wholesaler, keeping further constraints into 
account and optimizing the business objectives?

NeuroBayes also requires very little time for training new models 
and is able to discern even small effects. Since the statistical 
significance of each effect is tested in the training process, only 
relevant features are retained while the “noise” is discarded. As 
a consequence, NeuroBayes is immune to overtraining. Special 
attention has been paid to making the NeuroBayes suite very easy 
to work with. Features, such as the automatic determination of 
steering parameters and variable selection, allow the user to focus 
on the data and not on the tool. 

Steady development: Although NeuroBayes has its origins as a 
“bare” neural network, continued improvements over the years 
have transformed it to a mature machine learning suite. It includes 
advanced features such as pre-processing, boosting schemes, 
meta-estimators and, in particular, using event weights to improve 
feature finding, generalization and causal inference. The Blue 
Yonder technology stack grows through the implementation of 
more and more algorithms from the literature, as well as a number 
of in-house developments. These are regularly benchmarked 
on real-world datasets, adapted for special tasks and serve as 
components for improving and extending the existing capabilities 
of NeuroBayes.

Blue Yonder Technology and Bayesian 
Statistics 

In our opinion, Bayes’ theorem is one of the most important 
formulae in the world. Very roughly, in one simple equation, 
it connects the probability of a model being correct given the 
observed data (the so-called posterior) to the probability of 
observing the data given the model (the likelihood) and the 
knowledge before the new data arrived (the prior). Scientific 
progress (progress in models) is essentially the repeated 
application of Bayes theorem with more experimental data 
(progress in likelihood). There has been an almost fundamentalist 
war between frequentist and Bayesian statisticians over centuries. 
Our approach at Blue Yonder is to take the best methods from both 
schools of thought and to know when to use them.

In NeuroBayes, Bayesian methods are the basis of the conditional 
density algorithm and important in regularization during 
pre-processing of the input patterns, automatic relevance 
determination of input variables and architecture pruning, 
among other processes. These methods also give rise to excellent 
generalization properties. When the level of statistics is too low 
to learn from, or when the training targets don’t show statistically 
significant deviations from randomness, NeuroBayes tells us: 
“There is nothing to learn here”. 
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7  R. Collobert (May 6, 2011). “Deep Learning for Efficient Discriminative Parsing”. videolectures.net. 

A good example are next week’s lottery numbers, which are 
completely random and cannot be predicted. NeuroBayes is 
not a crystal ball where we glimpse the future in bottomless 
swirls of white smoke. It is a scientific method and will only give 
a prediction, if, at the time, it is able to do better than a random 
guess. 

This should not be compared to statements like “I knew it would 
happen” made after the event – laymen often mix up posteriori 
statements like this with our probability statements made before 
the event actually happened. NeuroBayes knows in advance the 
level of uncertainty associated with its prediction. 

Blue Yonder Technology and Big Data

Volume: Big data, first and foremost means large volumes of 
data. Particle physicists have been dealing with huge amounts 
of data for decades, always at the edge of what the current 
technology would support – and sometimes a little beyond 
that edge. Long before the term “big data” was coined, CERN 
and Fermilab produced huge amounts of data that had to be 
read-out from sensors, reduced in volume online, reconstructed 
in hierarchical procedures, distributed into different channels, 
distributed worldwide on the GRID (from which commercial 
cloud computing emerged) for storage and distributed analysis 
by thousands of users simultaneously. Petabytes of collision data 
recorded by huge detectors are complemented by Monte Carlo 
simulations on a similar scale. We know how to manage such 
huge data sets efficiently and safely, and under reasonable cost-
budget constraints, having developed many of the underlying 
technologies ourselves in our scientific careers.

Velocity: Velocity is a must-have in big data. Vertical database 
designs are imperative for efficient data analysis and parallelization 
is necessary in really big data. Both of these were around in 
the high energy physics community long before the advent 
of MapReduce. Efficient algorithms and speed-optimized 
programming are pivotal to the success of many projects, both 
in science and in business. At the LHCb experiment at CERN, 
30,000 NeuroBayes instances were run in parallel and helped 
decide whether recorded events are interesting and stored or not 
interesting and discarded. For online big data prediction tasks, it 
may also become important for the calculation to be extremely 
fast. 

In a cooperation between Blue Yonder and Karlsruhe Institute of 
Technology, the NeuroBayes expert algorithm was implemented 
on massively parallel hardware chips (FPGA). This will be used in 
the Japanese accelerator experiment Belle II, where so much raw 
data is produced in the sensors that it is not possible to read them 
out to computers at all. In total, 40 FPGA chips directly placed on 
the sensors each perform 2 billion intelligent decisions per second 
(!) to read out only those regions of the detector that contain 
interesting information.

Variety: Variety is important for many purposes, but not for all 
of our projects. Unstructured often means a complicated and 
dynamic structure. All machine learning algorithms need data in 
an interpretable form with a clear meaning, so that in the end, 
the complexity of the unstructured data must be understood 
and transformed into a simple structure, which can be managed 
throughout the project.

Value: It’s said that there are three Vs to big data, but we like to 
add a fourth — Value. Among the big data hype, it is important to 
quickly determine the value of a proposition. We only work on big 
data projects where we can clearly see a value. Big, in and of itself, 
is not valuable.

Blue Yonder, Neural Networks and 
Deep Learning 

Neural Networks are at the core of the NeuroBayes machine 
learning suite. In general, neural networks mimic the basic 
principles by which the human brain functions, though this does 
not necessarily imply that neural networks are used to mimic 
the brain as a whole or are used to understand consciousness 
and higher-level thinking. In fact, a large variety of different 
architectures and learning methods have been proposed over 
the years. After a period of hype, the last two decades saw neural 
networks fall in popularity compared with other machine learning 
methods, mainly because some of the first generation networks 
were highly over-trained and the predictions failed to live up to 
expectations. Although this was solved partly by using Bayesian 
methods (which are extensively used in NeuroBayes), neural 
networks were only rediscovered by the “mainstream research” 
recently, especially in the context of deep learning and artificial 
intelligence (AI). 

Recent advances in the development of deep learning techniques 
have caught everyone’s attention for its potential. From fully 
automatic speech recognition to object identification in pictures 
to classification of handwritten letters from pixels to defeating 
the world-champion in Go by an AI system developed by Google’s 
DeepMind. However, it is important to keep in mind that “deep 
learning” refers to a set of methods in the broader research area 
of neural networks and not the recent development of a new 
academic field. Famously, Ronan Collobert said that “deep learning 
is just a buzzword for neural nets” 7. The recent successes were 
made possible by solving several issues that previously made 
training large and multi-layered neural networks cumbersome, 
which often led to overtraining and poor performance of the 
predictions.

The NeuroBayes machine learning suite shares many 
characteristics of the techniques employed in deep learning 
applications. It is deliberately designed not to be the most general 
neural network that tries to mimic the human brain, but it is 
specialized to do numeric predictions better, faster, more reliably 
and with less bias than a human brain. 
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8  M. Feindt et al., A hierarchical NeuroBayes-based algorithm for full reconstruction of B mesons at B factories, Nuclear Instruments and Methods in Physics 
Research A 654 (2011) 432–440
9  M. Feindt, https://www.linkedin.com/pulse/pushing-forward-artificial-intelligence-learn-how-make-michael-feindt

One example is the ability to learn hierarchical structures. For 
example, an image is presented to a deep learning network, which 
receives it as a set of pixels of varying color and intensity in its 
input layer. From this raw input, more complex features such as 
lines and then faces, followed by facial expressions need to be 
extracted, building a hierarchical description of the image showing 
a human face.

A recent and very successful application of our NeuroBayes in a 
scientific setting was done as an analysis of particles, so-called 
B mesons, which were measured at the Japanese electron-
positron collider, KEKB. We used neural networks for identifying 
(reconstructing) the underlying signatures of these particles 
from the equivalent of the single pixels in a picture: Pi-0 mesons 
are identified from their associated photons, D mesons from 
“tracks” they leave behind as they traverse the complex sensors 
upon which a particle physics experiment is built. The next level 
(D* mesons) were identified from these D mesons and further 
tracks and finally, the B mesons were recognized from D or D* 
mesons that were identified in the previous step and further tracks 
associated to particles as they traverse the detector. All in all, 
72 NeuroBayes networks were combined, automating the work 
previously done by highly-skilled scientists. Fully deployed, the 
system found twice as many “interesting” events than had been 
found by 400 researchers in the previous 10 years8. Data collected 
over 10 years at an international large scale experiment cost about 
€700 million ($756 million), so the scientific and economic value of 
doubling the outcome is obvious. 

For the next generation experiment Belle II, we extended the 
system to a level that it performs the complete reconstruction 
completely automatically, in real-time, directly at data-taking, 
with a much smaller code base, faster and with even better 
performance.

Sometimes, though not always, it is useful to let a deep neural 
network learn the complete hierarchical structure starting from 
raw data. This has been especially successful for AI-problems that 
are easily manageable for humans, like image recognition and text 
or audio understanding. The main aim is to teach machines things 
humans can easily do. This will be important to improve man-
machine interfaces and for automation. Usually huge CPU (or GPU) 
resources are needed to gain important progress when applying 
deep learning in these areas.

We also think that the other aspect of AI, namely to become better 
than the best humans in deciding in complex situations (see the 
AlphaGo example above), is even more attractive. Our R&D in deep 
learning concentrates on this area. The idea that deep networks 
can — in principle, with lots of computing time — learn from 
unrefined raw data instead of cleverly engineered features is not 
important here, as domain knowledge, experience and expert 
data scientists are in no short supply at Blue Yonder. Take, for 
example, our initiative OR-by-AI (Operations Research by Artificial 
Intelligence)9. 

Recent successes included learning a sort of “gut feeling” for the 
results of complicated mathematical calculations, leading to 
speed-up factors by several ten thousand compared to classical 
dynamic programming methods, even learning strategies for 
solving problems yet unsolvable with reasonable resources.

Blue Yonder and Reinforcement 
Learning

In the last decade, reinforcement learning has become another 
very active field of research, with impressive progress being made. 
The idea here is to learn the optimum course of action through 
repeated interactions with the environment and observation of 
the results. Most of the progress has been in learning deterministic 
relations (e.g. for robot walking), but we think about further 
development of these techniques in highly stochastic areas. By 
integrating NeuroBayes prediction technologies into agents and 
initialization with off-policy historical data, we expect to optimize 
long-term success, as opposed to short-term optimization of 
business processes. Combinations of NeuroBayes and deep 
learning ideas with modern reinforcement learning techniques 
is, in our view, the most promising route toward super-human 
capabilities in optimizing complex stochastic decision tasks, such 
as the OR-by-AI mentioned above.

Blue Yonder and Domain Expertise

Experience is pivotal to success. Some may hope or believe that 
the recent advances in machine learning and artificial intelligence 
will allow machines to learn everything from data itself. However, 
history and our own experiences tell us differently. Let’s look a bit 
deeper into the success of Google’s AlphaGo, considered one of 
the most advanced AI systems right now, made for the specific 
task of playing the ancient game of Go. Its success is attributed 
to several components: Development of deep learning networks, 
recent advances in computer hardware to power these networks, 
combining several deep learning networks with more traditional 
approaches – and human expertise of professional Go players, 
which has guided the development of AlphaGo.

Blue Yonder has extensive experience from past projects and 
implementations in many different verticals. We have collected 
substantial expert-level knowledge in a range of sectors, 
focusing on retail in particular. This allows us to build the best 
predictive application solutions for specific applications and 
implementations, tailored to our customer’s individual needs. 
Another key to our success is our effective cooperation with sector 
experts on the client side, as they know the specifics and “quirks” 
of the systems and processes that can leverage the competitive 
advantage our technology offers.
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Resume: Why Cutting Edge AI 
Technology Matters 

Artificial intelligence technologies today become ubiquitous 
“tomorrow” and often obsolete soon after —  this truism of 
the innovation cycle is accelerated by today’s omnipresence 
of computers, which pervade almost every aspect of our lives. 
Building the next generation of products to serve our customers’ 
needs, sometimes even anticipating them, requires constant and 
steady progress in the development of new machine learning 
techniques and in the field of artificial intelligence.

In pure science – and also in enterprises – we often find that 
progress is rarely steady. Our in-depth experience has taught us 
that research communities often stick with the same standard 
picture and hold onto familiar tools for a long time. At Blue Yonder, 
we believe in constant innovation and strive for academic and 
operational excellence in all we do. We don’t rely on mainstream 
consensus and instead constantly improve our skills and 
technology stack to meet tomorrow’s challenges. Our strong 
scientific heritage allows us to draw the right conclusions from 
the data and our academic excellence is the best foundation 
to develop new techniques and technologies to continuously 
advance our products.

The aim in all of our endeavours is to create measurable and 
reliable value for our customers and to give them a competitive 
advantage far ahead of the competition – and it’s tremendous fun 
to constantly push the boundaries of what is possible.

Blue Yonder GmbH
Ohiostraße 8
76149 Karlsruhe
Germany
+49 721 383117 0

Blue Yonder Software Limited 
19 Eastbourne Terrace
London, W2 6LG 
United Kingdom 
+44 20 3626 0360

Blue Yonder Analytics, Inc. 
5048 Tennyson Parkway 
Suite 250 
Plano, Texas 75024 
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